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Abstract: The comparative study of subnational units is on the rise. Multilevel regression and poststratification (MrP)
has become the standard method for estimating subnational public opinion. Unfortunately, MrP comes with stringent
data demands. As a consequence, scholars cannot apply MrP in countries without detailed census data, and when such
data are available, the modeling is restricted to a few variables. This article introduces multilevel regression with synthetic
poststratification (MrsP), which relaxes the data requirement of MrP to marginal distributions, substantially increases the
prediction precision of the method, and extends its use to countries without census data. The findings of Monte Carlo, U.S.,
and Swiss analyses show that, using the same predictors, MrsP usually performs in standard applications as well as the
currently used standard approach, and it is superior when additional predictors are modeled. The better performance and
the more straightforward implementation promise that MrsP will further stimulate subnational research.

Replication Materials: The data, code, and any additional materials required to replicate all analyses in this arti-
cle are available on the American Journal of Political Science Dataverse within the Harvard Dataverse Network, at:
https://doi.org/10.7910/DVN/I0VEMG.

The comparative study of subnational units has at-
tracted growing interest in the literature. There
are a number of reasons for this: Subnational

units are potentially better suited for comparative anal-
ysis than countries because they are less heterogeneous,
more accurate data are available, country-specific fac-
tors are constant, and controlled comparisons allow for
the development of interesting identification strategies
for causal inference (e.g., Snyder 2001; Tausanovitch and
Warshaw 2014; Ziblatt 2008). A critical but challenging
element of subnational comparative research is the es-
timation of public opinion. The recent introduction of
multilevel regression with poststratification (MrP) gen-
erates reliable public opinion estimates for subnational
units. Unfortunately, the use of MrP, as currently applied
in the literature, comes with stringent data requirements.
We build on the recent methodological advances and de-
velop a new approach that extends the use of MrP beyond
a few developed countries and that increases the predic-
tion precision of the method substantially.
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Early attempts in the estimation of public opinion
disaggregated national surveys into subnational subsam-
ples (Miller and Stokes 1963). One solution for overcom-
ing the small-n problem of the disaggregation approach
was to combine multiple surveys with the same ques-
tions into one mega-poll (Erikson, Wright, and McIver
1993). Gelman and Little (1997), then, laid the method-
ological groundwork for MrP, which can be applied by
using standard national survey data and is much more
precise than disaggregation. More recent articles provide
interesting empirical analyses of substantive questions,
including further testing and revision of MrP (Lax and
Phillips 2009b; Warshaw and Rodden 2012). The quick
spread of MrP is quite remarkable—not least when we
consider that the method has, to the best of our knowl-
edge, mostly been applied so far in a few countries, such
as the United States, the United Kingdom, Germany, and
Switzerland.

The narrow spatial scope is mainly because of
the stringent data requirement of the current standard
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application of the method. The precondition for using
MrP is that detailed census data in the form of joint dis-
tributions are available for poststratification. Researchers
need to know, for example, how many 18–35-year-old
women with a university degree live in each subnational
unit. This data requirement makes it impossible to apply
MrP in countries where such data are not available—
whether this is because of data protection laws (e.g., in
India) or because the data are not gathered by a sin-
gle agency (e.g., in Afghanistan). Furthermore, if cen-
sus data are available, researchers can only use three
or four demographic variables that are provided in the
restrictive format of joint distributions as individual-
level predictors of political preferences. Strong predic-
tors such as party identification and income cannot be
modeled.

We develop an alternative application of MrP, which
we call multilevel regression with synthetic poststratifi-
cation (MrsP). MrsP relies on marginal distributions.
For applying MrsP, researchers only need to know, for
example, the shares (marginals) of women, of univer-
sity graduates, and of 18–35-year-old citizens in each
subnational unit. Due to this relaxed data requirement,
MrsP can be applied in countries where MrP has not
been possible so far (e.g., in India and Afghanistan).
A further important advantage of MrsP is that it in-
creases the prediction precision of subnational public
opinion estimation for countries with a census (e.g.,
the United States and Switzerland). We analyze improve-
ments in prediction with U.S. and Swiss data by adding
strong predictors—beyond the standard demographic
variables—such as income and party identification. The
gains in prediction precision are very substantial. The
findings of the U.S. application show that MrsP outper-
forms the standard version of MrP with a 43% reduction
of prediction error (measured with the mean squared
error), which is even larger than MrP’s improvement
upon disaggregation (the error decreases by 35%). The
Swiss analyses provide even stronger results in favor of
MrsP.

This article presents two versions of MrsP: a simpler
one that is straightforwardly implemented and a more
elaborate one that takes full advantage of the informa-
tion in the survey data. Although the findings suggest
that elaborate MrsP is, generally speaking, the method of
choice, researchers can, given some conditions, also apply
the simpler version. We provide, based on the presented
analyses, premodeling guidance to help researchers spec-
ify MrP models. In sum, we believe that MrsP, the ap-
proach developed in this article, will further stimulate
subnational comparative research relying on public opin-
ion estimates, as it goes beyond the data limitations of the
current standard application, extends the use of MrP, and

substantially improves the prediction precision of the still
young method.

“Classic MrP” and Its Limits

The application of MrP has its origins in the Gelman and
Little (1997) study, which combined hierarchical mod-
eling and poststratification. Park, Gelman, and Bafumi
(2004) subsequently introduced the method to political
science with a remarkable impact on the discipline, as the
substantial number of recent studies using the approach
demonstrates (Kastellec, Lax, and Phillips 2010; Lax and
Phillips 2009a, 2009b, 2012; Pacheco 2012; Tausanovitch
and Warshaw 2014; Warshaw and Rodden 2012). In re-
cent years, MrP has been established as the state-of-the-
art method for comparative subnational research study-
ing public opinion. Accordingly, Selb and Munzert (2011,
456) conclude that MrP is the “gold standard” in estimat-
ing political preferences on the subnational level.

MrP estimates public opinion on the subnational
level in four steps. The first is to conduct a survey that
identifies personal characteristics and asks a number
of political preference questions; second, a hierarchical
model is fitted to the data to make predictions for specific
voter types (e.g., 18–35-year-old women with a university
degree); in the third step, predictions for all predefined
voter types are calculated using the estimates of the hier-
archical model; and, finally, researchers calculate, based
on fine-grained census data, public opinion estimates in
the subnational units by weighting the predictions of each
voter type according to the number of voters living in the
subnational units with the same characteristics.

Let us further illustrate the data requirements and
the method. Researchers start with the collection of na-
tional survey data of usually somewhere between 500 and
1,500 respondents and model the responses on the sup-
port for a specific policy. For illustrative purposes, we ex-
plore an MrP response model with two individual-level
variables—gender (men/women) and education (no high
school, high school, college, postgraduate)—and with
random effects for the subnational unit (�c ) and the re-
gion (�r ). In addition, we include a number of contex-
tual factors explaining variation between the subnational
units (Xc ). Accordingly, we write the following hierarchi-
cal probit, as a standard response model, to estimate the
support for a specific policy:

Pr(yi =1)=�
(
�0 + �

gender
j [i] + �education

m[i] + �subnational unit
c

)

�
gender
j ∼ N

(
0, �2

gender

)
, for j = 1, . . . , J

�education
m ∼ N

(
0, �2

education

)
, for m = 1, . . . , M
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TABLE 1 Census Data Requirement Example of Classic MrP

�subnational unit
c ∼ N

(
�

region
r [c] + �Xc , �2

subnational unit

)
,

for c = 1, . . . , C

�region
r ∼ N

(
0, �2

region

)
, for r = 1, . . . , R

One of the distinguishing features of MrP is the par-
tial pooling and the shrinkage to the mean induced by
modeling random effects (Steenbergen and Jones 2002).
This partly accounts for the good predictive performance
of MrP. In this example, there are eight voter types in each
subnational unit (four education categories and gender:
J × M = 8). The response model estimates are used to
calculate predictions �̂c j m for all possible combinations of
j and m in each subnational unit c . For poststratification,
the researcher needs to know the joint distributions in
each subnational unit, that is, the frequency of each voter
type (N11, N12, . . . , N24). We call MrP that relies on joint
distributions “classic MrP,” as it is the current standard
method in the literature. Census officials provide, if avail-
able, the information on the joint distributions. Table 1
illustrates the data requirement of classic MrP.

Finally, each prediction is weighted by the joint dis-
tribution data and the total sum divided by the number
of all residents:

�̂c =
∑

j

∑
m �̂jm∈c Njm∈c

Nn∈c

=
∑

j

∑
m �(�̂0 + �̂m + �̂ j + �̂c )Njm∈c

Nn∈c
.

In this example, we rely on eight voter types. Real-
world applications include more individual-level random
effects. Lax and Phillips (2009b), for example, work with
gender, three races, and four education and age categories
(96 types) and thus need the exact number of 18–29-year-
old black women with a high school degree in each state,
among other data. Such fine-grained information is only
available if a detailed census has been carried out. If joint
distribution data are available, the specification of the re-
sponse model is predetermined by the data of the census
bureau (not the modeling decisions of researchers) and
usually restricted to standard demographic variables. The

demanding data requirements of classic MrP are prob-
lematic for the following reasons:

� In developing countries, fine-grained census data
are not available. In Afghanistan, for example,
no census is carried out, whereas in the more
developed India, census data on the village level
are not available as joint distributions.1

� The joint distributions of the census in developed
countries do not include variables that are po-
tentially important predictors of political prefer-
ences. Party identification, for example, is avail-
able in neither the Swiss nor the U.S. census as
joint distributions.

Before political scientists started working with MrP,
the standard method for deriving preference measures on
the subnational level was the disaggregation of national
surveys into subnational samples. While this method is
free from data availability restrictions, the estimates for
small constituencies are unreliable, as they stem from
very few observations (Levendusky, Pope, and Jackman
2008). Several studies have shown that MrP estimates are
more precise than disaggregation estimates (e.g., Lax and
Phillips 2009b).

However, even for countries with good data avail-
ability, such as Germany, researchers continue to develop
alternative approaches to MrP because of data availabil-
ity restrictions. Selb and Munzert (2011), for example,
refer to MrP as the “gold standard,” stating that it can-
not be applied in their analysis of German electoral dis-
tricts because data on joint distributions are not available.
They develop, as an alternative, a sophisticated Bayesian
hierarchical estimation strategy that exploits auxiliary
geographic information. However, Selb and Munzert
(2011) argue that their approach is useful if MrP can-
not be applied, advising that scholars should exploit in-
formation on the constituency populations with MrP, if

1These are just two illustrative examples. In principle, MrsP can be
applied in all countries, where data on marginal distributions are
available.
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possible.2 The contribution of this analysis is exactly that
researchers can apply MrP in data-sparse cases, as the
approach we develop relies on marginal distributions.
Rather than giving up on individual-level predictors, we
show how they can be used fruitfully. Thus, we build upon
the strength of MrP and make the method more widely
applicable.

MrP with Synthetic Joint
Distributions (MrsP)

Some of the most sophisticated MrP contributions are
also constrained by the data requirements discussed
above. Warshaw and Rodden (2012, 208), for example,
study district-level public opinion in the United States
without using age as a predictor in their response model
because the “census factfinder does not include age break-
downs for each race/gender/education subgroup.” This
example highlights the data availability problem of clas-
sic MrP: Whereas U.S. district data on the age structure
are available as marginal distributions, data on the exact
number of elderly people with a given gender, age, and
education are not. More generally, marginal distributions
are available for many interesting variables in most coun-
tries. In the Afghan case, for example, the Asia Founda-
tion collects data on the ethnic and linguistic structures
of subnational populations.

The key deviation of MrsP, the approach developed in
this article, is that it relies on synthetic joint distributions
that are created with data on the marginal distributions
(whereas classic MrP relies on the “true” joint distribu-
tions). Our point of departure is that researchers can
collect data on the population structures of subnational
units as marginal distributions for various variables that
are potentially important predictors of political prefer-
ences. Instead of relying exclusively on the demographic
variables of the census, MrsP allows the modeling of any
political, social, economic, or demographic variable asked
in the survey. Researchers only need the marginal distri-
butions of these variables in the subnational units, which
are more widely available.

Before we further elaborate on MrsP, we would like
to discuss how our approach relates to raking, a stan-
dard survey research procedure applied for the analy-
sis of nonrepresentative samples. In a nutshell, raking
assigns weights based on the marginal distribution of
one variable, then calculates—conditional on the derived
weights—new weights with the marginal distribution of

2Selb and Munzert (2011) recommend applying their method when
the number of subnational units under study is exceptionally high
compared to the available survey data.

the second variable, and continues with this iterative pro-
portional fitting until the weighted survey best approxi-
mates the distribution of the target population (Deming
and Stephan 1940; Fienberg 1970). Appendix E discusses
in detail how raking can be integrated in the MrP frame-
work. Like MrsP, raking allows us to model variables for
which we only know the marginal distribution. However,
both for the prediction of public support and the esti-
mation of uncertainty, MrsP exploits more information
from the data compared to the raking approach. Accord-
ingly, it is not surprising that the MrsP predictions in the
example presented in Appendix E are more precise. Thus,
although the use of raking provides a feasible alternative,
we recommend MrsP.

Instead of relying on true joint distributions, which
are often unavailable, MrsP calculates synthetic joint
distributions with data on the marginal distributions.
The synthetic joints can be computed in different ways.
Kastellec et al. (2016), for example, extract the data from
multiple surveys. For the more standard situation, where
just one survey is available, we propose two estimation
techniques: a simple and a more elaborate one. In the
simple case, the synthetic joint is estimated as the product
of the marginal distributions. The accordingly estimated
synthetic joint, which we call the simple synthetic joint,
will be correct when the used variables are independent
of one another. If they are not—which is in all likelihood
the case—the simple synthetic joint deviates from the
true joint distribution. However, even in that case, the
example below illustrates that the prediction deviation
between MrP and MrsP is only because of the noncon-
stant marginal effects of the probit link function in the
response model. In the following sections, we investigate
Monte Carlo simulations and real-world data analyses.
Based on the presented findings, we conclude that there
are most likely no differences in terms of prediction pre-
cision in applied work.

We later propose a more elaborate technique for
estimating the synthetic joint distributions that does
not make the unrealistic assumption of noncorrelation
among individual-level variables, but it is a little more
complicated to compute. In the analysis of the real-world
application, we will explain the estimation of what we
call adjusted synthetic joint distributions, which basically
take into account information on the correlation among
individual-level variables that is available from the sur-
vey data. This more elaborate version of MrsP allows for
a more nuanced estimation of uncertainty and provides,
under some conditions, better point predictions. Based on
the presented findings, we will discuss when researchers
can use the simple MrsP version and when we would
recommend the more elaborate MrsP approach.
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TABLE 2 Example of True and Simple Synthetic Joint Distributions for the Most Extreme Case

Note: An example is shown of a simple synthetic joint distribution for the most extreme case where the two individual-level variables are
fully dependent. The predicted support in Table 2(c) is based on a model that includes two random effects (�v1 and �v2) with the following
estimates: �̂v1

1 = −1, �̂v1
2 = +1, �̂v2

1 = −0.5, and �̂v2
2 = +1.

But let us first come back to the comparison between
classic MrP and MrsP. The following theoretical discus-
sion illustrates the difference between classic MrP and
simple MrsP by emphasizing the scenario under which
the two estimation procedures are most distinct. Table 4
shows an example of two binary individual-level variables,
v1 and v2, that are completely separated and thus totally
dependent. The simple MrsP synthetic joint distribution,
estimated as the product of the marginal distributions
(60% and 40%), deviates quite strongly from the true
joint distribution in this most extreme case (compare
Table 2a and 2b).

What matters for applied scholars is how much the
predictions differ with the use of the simple synthetic joint
distribution (MrsP) compared to the true joint distribu-
tion (classic MrP). To estimate the difference in predic-
tions, we assume a response model, which is identical in
both procedures, with two random effects on the individ-
ual level (age and education) and an estimated constant
with the value 0. We discuss below how changing the
constant affects the findings. As estimates for the ran-
dom effects, we pick fairly large numbers (from −1 to
+1) to magnify the difference between classic MrP and
MrsP. In applied work, random effects are clearly smaller
(see Appendix C). The predicted probability for an in-
dividual of a specific cell is estimated using the random
effects (e.g., for an individual from the upper left cell:
p̂11 = �(�̂v1

1 + �̂v2
1 )). Table 2(c) reports the predicted

support for each cell based on the response model esti-
mates. The support in the subnational unit is estimated by
weighting the predictions for each type by its frequency
in the population. With the true joint distribution (classic
MrP, see Table 2a), the support in the subnational unit,
p̂true , is estimated as follows:

p̂true = 0.6 · �(�̂v1
1 + �̂v2

1 ) + 0.4 · �(�̂v1
2 + �̂v2

2 );

= 0.6 · �(−1.5)︸ ︷︷ ︸
0.07

+ 0.4 · �(+2)︸ ︷︷ ︸
0.98

= 0.431.

Using the simple synthetic joint distribution (MrsP,
see Table 2b), the support in the subnational unit, p̂syn, is
estimated as follows:

p̂syn = 0.24 · �(�̂v1
1 + �̂v2

2 )︸ ︷︷ ︸
should be 0% of pop

+ 0.36 · �(�̂v1
1 + �̂v2

1 )︸ ︷︷ ︸
should be 60% of pop

+ 0.24 · �(�̂v1
2 + �̂v2

1 )︸ ︷︷ ︸
should be 0% of pop

+ 0.16 · �(�̂v1
2 + �̂v1

2 )︸ ︷︷ ︸
should be 40% of pop

;

= 0.24 · �(0)︸︷︷︸
0.5

+ 0.36 · �(−1.5)︸ ︷︷ ︸
0.07

+ 0.24 · �(+0.5)︸ ︷︷ ︸
0.69

+ 0.16 · �(+2)︸ ︷︷ ︸
0.98

;

= 0.466.

In this most extreme example, the deviation in pre-
dicted support is only 3.5%. The prediction deviation is
surprisingly small considering that we choose variables
that are perfectly correlated and high values for the esti-
mated random effects. To understand the source of the
deviation, it is important to recall that the simple synthetic
joint distribution is computed using the correct marginal
distributions: It accounts for 60% of the population with
the characteristic v1 = 1, for 60% with v2 = 1, for 40%
with v1 = 2, and for 40% with v2 = 2; only the joint
distribution values are wrong. However, the prediction
deviation of 3.5% is not so much a product of the wrong
synthetic joint distribution values but rather a result of
the nonconstant marginal effects of the probit link func-
tion in the response model. In a probit model, adding
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�v1
1 to a hypothetical person with v2 = 0 has a different

marginal effect than it has on a person with v2 = 1.
Let us illustrate that point by looking at how the

support in the subnational unit is estimated in both pro-
cedures. In this case, all individuals of the first row of
the matrix (v1 = 1) also have the characteristic v2 = 1
(see Table 2a). For example, all women are also university
graduates (and no man has a university degree). Accord-
ingly, women’s predicted support of 7% for the policy is
weighted by 0.6 (see the first part of the equation using
the true joint distribution). In the estimation with the
synthetic joint distribution, women’s predicted support
is overestimated, as the 7% support is only weighted by
0.36 (see the second part of the equation using the syn-
thetic joint distribution), whereas the additional 0.24 of
women (with the characteristic v1 = 1, i.e., no university
degree) is multiplied with a higher predicted probabil-
ity of 50% (see the first part of the equation using the
synthetic joint distribution). As there are no women with
no university degree in that illustrative example, women’s
predicted support for the policy is overestimated.

For men (v1 = 2), the equation using the true joint
distribution weights the very high 98% probability of
men’s support for the policy by 0.40. The prediction using
the synthetic joint distribution, however, underestimates
men’s support for the policy, as it weighs the 98% support
only for 0.16 and adds 0.24 with 69% support. Overall,
MrsP overestimates women’s and underestimates men’s
support for the policy in this example. In a linear model,
the over- and the underestimation in predicted support
between men and women would cancel each other out—
but not in a probit model: The nonconstant marginal
effects in a probit model explain the small prediction
deviation between classic MrP and MrsP of 3.5%.3 Based
on this analysis, we derive two important implications.
First, the deviation in predictions between classic MrP and
MrsP is only because of the nonlinear link function of the
probit model. Second, the nonconstant marginal effects
of the probit model only cause deviations in predictions
to the extent to which the individual-level variables are
correlated.

One aspect of the above example is tilted in favor of
MrsP: The overall public support is close to 50%. In this
area, a linear function provides the best approximation of

3Note that in the linear case, the two equations predicting public
opinion are identical. We have explored MrP with a linear model,
as in most situations a linear probability model and a binary model
will produce similar results (Angrist and Pischke 2008; Beck 2011).
However, MrP with a linear model does not perform optimally.
The main problem is that it tends to produce estimates that are less
than 0 or greater than 1. This is one of the criticisms of using linear
models for binary outcome variables (Maddala 1983, 16).

TABLE 3 Data Requirement and Model
Flexibility of Classic MrP and MrsP

MrsP Classic MrP

True joint distribution needed × √
Marginal distributions are sufficient

√ ×
Flexible modeling of response model

√ ×

the logit or probit model, and the first derivative is close to
constant. In the subsequent Monte Carlo analyses, we will
vary that constant to mimic situations where the average
public support ranges from 50% to the highly lopsided
80%. Table 3 summarizes the distinction between classic
MrP and MrsP. The most important advantage of MrsP is
that it allows the modeling of individual-level variables,
of which only the marginal distributions are available,
whereas having data on the true joint distribution is a
conditio sine qua non for classic MrP. MrsP thus extends
the use of MrP to countries without a census and makes
the application of MrP more flexible for countries where
census data are available.

The potential downside of simple MrsP is that the
correlation between individual-level variables induces a
small deviation in prediction because of the nonconstant
marginal effects of the probit model.4 The discussed il-
lustrative example explored the most extreme (and un-
realistic) case with a perfect correlation between the two
variables. If they were totally independent—which is also
unrealistic—classic MrP and simple MrsP would provide
the same results. In general, the deviation between the
predictions becomes larger as the correlation increases.5

The deviation in prediction between the two MrP ap-
proaches also increases with higher variances of the ran-
dom effects. The next sections further analyze whether,
and under which circumstances, MrsP performs as well
as MrP.

Simple MrsP and Classic MrP
with the Same Data

Should we expect that the predictions differ between MrP
and MrsP in applied work? To answer that question, we
execute Monte Carlo analyses with three manipulated pa-
rameters: First, we change the sample sizes from a small

4A second limitation is that deep interactions can only be modeled
if the two constituting variables are available in the census data
(Ghitza and Gelman 2013).

5See Appendix A for correlations in Swiss and U.S. data.
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sample of 500 respondents to a sample of 1,000 respon-
dents and a large sample of 2,000 respondents. Second, we
use four different correlations (�) among the individual-
level variables (0, 0.2, 0.4, and 0.6). Third, we vary the
degree of public support. In the case of no correlation,
simple MrsP and classic MrP are equivalent (with per-
fect independence, the product of the marginals equals
the true joint distribution). Correlations of 0.2 and partly
also of 0.4 are realistic for standard demographic values,
whereas 0.6 is exceptionally high (see Appendix A). As
discussed in the previous section, the prediction devia-
tion between the two procedures should increase as the
correlation becomes larger.

Our data-generating process (DGP) assumes three
variables on the individual level and a variable on the
subnational level. We analyze 25 subnational units; 10
of them are large (each covering 7% of the total popu-
lation) and 15 are small (each covering 3% of the total
population). The following equations describe the DGP:

y∗
i = �0 + �1[i] + �2[i] + �3[i] + �subnational unit

c

+ εic .

Pr(yi = 1) = �(y∗
i ), εi c ∼ N(0, 1).

�̄1i ∼ N(0, 1) & �̄2i ∼ N(0, 1) & �̄3i ∼ N(0, 1).

�subnational unit
c = �c1 + �c2 + εc , εc ∼ N(0, 1)

for c = 1, . . . , 25.

�c1 ∈ {0, 0.4, 0.85}, �c2 ∼ U (−.2, .2).

The accordingly simulated data allow us to analyze
how the simple version of MrsP performs as public sup-
port becomes more lopsided: If �c1 = 0, the average re-
gion’s public support is 50%; if �c1 = 0.4, the average
support is 65%; and if �c1 = 0.85, the average support is
80%. The subnational level variable (�c2) is evenly spread
between ±0.2. The individual-level variables (�1, �2, �3)
are based on draws from a multivariate normal distri-
bution and transformed to discrete variables with four
categories each:

�ki =

⎧⎪⎪⎨
⎪⎪⎩

1 if �̄ki < −1,

2 if − 1 < �̄ki < 0,

3 if 0 < �̄ki < 1,

4 if �̄ki > 1,

and

Var(�̄) =
⎛
⎝ 1 � �

� 1 �

� � 1

⎞
⎠ for k = 1, 2, 3.

The selected random effects (�ki) are quite large in
size, as they are based on the following normal distribu-
tions: (�k ∼ N(0, 1), ∀ k). In real-world examples, the
random effects are smaller (the conservative setup of the

analysis tends to overestimate the prediction deviation
between classic MrP and MrsP).6 For the Monte Carlo
analyses, we create a “true” population of 1 million citi-
zens, draw for every simulation a new sample, and esti-
mate disaggregation, classic MrP, and MrsP predictions.

Figure 1 shows the prediction precision for all 36
combinations of the Monte Carlo analyses with three dif-
ferent sample sizes, three different average levels of public
support, and four different correlations for disaggrega-
tion, classic MrP, and MrsP. Each of the nine plots reports
the simulation results for the four different correlations of
the individual-level variables (0, 0.2, 0.4, 0.6), with vari-
ations in sample sizes (500; 1,000; 2,000) and in average
public support (50%, 65%, 80%). Concretely, the dots
show the mean absolute error (MAE) for disaggregation,
classic MrP, and simple MrsP for 25 subnational unit pre-
dictions that were estimated with 100 simulations each.
The intervals document the range of the 100 MAEs for the
three estimation approaches. Thus, we show the size of
the prediction error. Note that a small error in prediction
is substantively more important when public support is
around 50% than for the case of a very distinct public
opinion.

The findings confirm our expectations. First, as other
studies have already shown, MrP systematically outper-
forms disaggregation (e.g., Lax and Phillips 2009b). Sec-
ond, when the correlation between the individual-level
variables is 0, classic MrP and the simple version of MrsP
lead to exactly the same predictions. Third, increasing the
sample size improves disaggregation but does not change
the relative performance of MrP versus MrsP. Fourth,
the deviations in prediction between classic MrP and
MrsP grow as the correlation between the individual-
level variables increases (but note that the predictions
between classic MrP and MrsP are only distinguishable if
the correlation is at a high level of 0.6). Finally, the rela-
tive performance of MrsP declines as the average public
support deviates from 50%. While simple MrsP always
outperforms disaggregation, its performance is weakest
when the individual-level variables are highly correlated
(� = 0.6) and when the average public support is at 80%.
Although high correlations of about 0.6 are very unusual
in applied work (see Appendix A) and average public
support is typically between 20% and 80%, these results
show under which conditions applied researchers should
be careful when employing the simple version of MrsP.

To further investigate the claim that there are most
likely no deviations in prediction between classic MrP

6For example, in the MrP analysis of state public opinion by
Kastellec, Lax and Philipps (2016), the largest random effect has
a variance of 0.3. In this study, the largest random effect has a
variance of 0.45 (see Appendix C).
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FIGURE 1 Monte Carlo Analyses: Mean Average Prediction Error

Note: Each plot shows the simulation results for a specific sample size (N ∈ {500, 1000, 2000}) with varying levels of average
support (50%, 65%, 85%). The y-axis shows the mean absolute error (MAE), and the x-axis shows the different correlations
among the individual-level variables.

and MrsP in applied work, we analyze real-world data
on 186 direct democratic votes in Switzerland between
1990 and 2010.7 We estimate the cantonal support with
the true joint distributions (classic MrP) and the simple
synthetic joint distribution (MrsP) by using data from the
national VOX surveys (n ≈ 500 − 1, 000) and compare
the predictions to the actual vote outcomes. We rely on

7For the analysis, we use three different data sources: the Federal
Statistical Office (BfS) collects vote outcome data for the cantons
for all 186 direct democratic votes; the joint distributions for each
canton are from the 2000 census; and the survey data are from the
VOX research (Kriesi 2005).

a standard response model, including the demographic
variables available as joint distributions from the census
(gender, education, and age), the shares of German speak-
ers and of Catholics as predictors on the subnational (i.e.,
cantonal) level, and random effects for regions and can-
tons. For all 186 votes, we estimate the following response
model:

Pr(yi = 1) = �
(

�0 + �Xc + �
gender
j [i] + �education

k[i]

+ �
age
m[i] + �canton

c[i] + �
region
r [i]

)
.
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FIGURE 2 Prediction Precision of Disaggregation, Classic MrP, and Simple MrsP
Estimates with the Same Data for 186 Swiss Votes

Note: MAEs for 186 public votes are displayed. The right plot zooms in on the lower region of the left plot. The gray
line reports the MAEs for disaggregation, the red dots show for classic MrP, and the blue dots for simple MrsP.

�
gender
j ∼ N(0, �2

gender), for j = 1, . . . , J .

�education
k ∼ N(0, �2

education), for k = 1, . . . , K .

�age
m ∼ N(0, �2

age), for m = 1, . . . , M.

�canton
c ∼ N(0, �2

canton), for c = 1, . . . , C .

�region
r ∼ N(0, �2

region), for r = 1, . . . , R.

Figure 2 reports the MAEs for disaggregation, clas-
sic MrP, and MrsP over all 186 direct democratic votes.
The performance similarities of classic MrP and MrsP
are striking. The estimates are so close that we can only
identify differences once we zoom in (see the right-hand
plot). The findings show that there is no difference in
prediction precision between the two methods. While
the Monte Carlo analyses already suggested that we will
not find prediction deviations between classic MrP and
MrsP in real-world data applications, the findings of the
Swiss analysis support that claim. The results are virtually
identical because the factors that theoretically drive the
estimates of the two methods apart are not a problem.
The random effects in the response model are lower than
in the Monte Carlos analyses (the variances of the ran-
dom effects are less than 0.1), the correlations among the
individual-level variables are small (with a maximum of
� = −0.2; see Appendix A), and the public support is on
average 49.2%.8

8The 90% confidence interval is [18.7%, 82.1%].

MrsP with Adjusted Synthetic Joint
Distributions

The simple version of MrsP discussed so far was based
on the strong and unrealistic assumption that the in-
dividual predictors are perfectly uncorrelated with one
another. Although the accordingly computed simple syn-
thetic joint distributions deviate quite strongly from the
real joint distribution data, the results of the Monte Carlo
simulation and the Swiss data analysis have shown how
well even this simple version of MrsP performs, and the
illustrative theoretical example explained why. However,
we can improve upon that by using information on the
correlation among the individual-level variables from the
survey data for the estimation of what we call adjusted syn-
thetic joint distributions. This more elaborate version of
MrsP goes beyond the unrealistic independence assump-
tion and takes full advantage of the information provided
in the survey.

To illustrate the estimation of adjusted synthetic
joint distributions, we assume that the census pro-
vides data on the joint distributions for two variables,
gender (male/female) and age (young/elderly), but
not for an additional important predictor, education
(low/middle/high), for which we only have data on the
marginal distributions in the subnational units. In that
case, we extend the available joint distribution data on
gender and age with information on the marginal dis-
tribution of education based on the correlations in the
survey. The basic point is that the survey data might, for
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TABLE 4 Hypothetical Survey Information

(a) Real Survey Information

Education

Gender Age N Low Middle High

♂ young 360 120 180 60
♂ elderly 300 80 150 70
♀ young 350 140 150 60
♀ elderly 360 90 180 90

Survey distribution 31.4% 48.2% 20.4%

(b) Corrected Survey Information

Education

Gender Age Low Middle High

♂ young 96 187 74
♂ elderly 64 156 86
♀ young 111 156 74
♀ elderly 72 187 110

Survey distribution 25% 50% 25%

Note: The top table shows hypothetical survey information, whereas
the bottom table shows the corrected version that is necessary to
create an optimal synthetic joint distribution.

example, suggest that elderly men tend to have higher ed-
ucational backgrounds than elderly women. We use this
information to estimate the adjusted synthetic joint dis-
tributions. If no census data on joint distributions are
available for any variables (only marginals), the adjust-
ment relies exclusively on the survey information.

In the illustrative example of Table 4, the distribution
of education in the population of a given subnational
unit is 25% low, 50% middle, and 25% high (note that the
marginal distribution ofeducation varies across subna-
tional units; we illustrate in the following the adjustment
procedure for one subnational unit). In the full survey
data, which includes respondents from the entire country,
the distribution of education will deviate to some ex-
tent. Table 4(a) reports the raw survey data from the entire
country broken down by gender, age, and education.
Every line shows the distribution of education for a
specific gender and age combination, and the bottom
line reports the overall distribution of education in
the sample (31.4%/48.2%/20.4%), which differs from the
true census information of the illustrative subnational
unit (25%/50%/25%).

In a first step, we adjust the survey distribution of
education to the known marginal distribution of the
subnational unit by creating a correction factor for each
of the three education categories. Since the survey in-

cludes too many less-educated respondents, given the
marginal distribution of the subnational unit, we down-
weight the less-educated respondents by a factor of about
0.796 (= 0.250

0.314 ). Table 4(b) shows how the survey infor-
mation is corrected accordingly for all three education
categories. Simply put, each line of Table 4(b) represents
the best guess, based on the survey information, of how
education is distributed in the subnational unit with
the marginal distribution of 31.4%/48.2%/20.4% for each
combination of gender and age.

In a second step, we compute the adjusted synthetic
joint distribution using the census data of the true joint
distributions (for gender and age) and the relative
weights of the education distribution for each gender
andage category derived from Table 4(b). In other words,
we further break down the gender/age joint distribu-
tions of the census by extending each cell with the three
education categories according to the relative shares of
the corrected survey data information. For example, if
26% of the population in the illustrative subnational unit
are young men, we further split that gender/age cate-
gory using the relative shares of the first line of Table 4(b).
Accordingly, 7.0% (= 0.26 × 96

(96+187+74) ) of the popula-
tion are young men with low education, 13.6% are young
men with middle education, and 5.4% are young men
with high education. Following that procedure, we esti-
mate the adjusted synthetic joint distributions for each
gender/age/education category in each subnational
unit. The estimation of adjusted synthetic joint distribu-
tions takes full advantage of the survey information, as-
suming that the correlations among the individual-level
variables are the same across subnational units. Thus,
MrsP with adjusted synthetic joint distributions is a more
fine-grained and elaborate technique than the previously
discussed simple version.

In addition, the more elaborate version of MrsP al-
lows for a more precise estimation of uncertainty. The
most important source of uncertainty in MrP applica-
tions comes from the response model. This uncertainty
can be estimated by generating Nsim draws of the response
model’s posterior vector for computing Nsim predictions.
In MrsP applications, a further source of uncertainty is
due to the the lack of precise data on the joint distri-
butions. As discussed above, the derived adjusted syn-
thetic joint distributions are the best guess given what
we know from the survey data and all the information
available on the joint and marginal distributions. To ac-
count for the uncertainty of the adjustment technique,
we perform simulations as well. Using again the illustra-
tive example of young men (see Table 4b), we create Nsim

draws of a sample of 357 young men from a multino-
mial distribution with relative frequencies of 96

357 , 187
357 , and
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74
357 . We then estimate this form of uncertainty for each
gender/age/education category in each subnational
unit and integrate it with an additional loop in the esti-
mation.9 The real-world analyses of the next section apply
this elaborate MrsP technique.

How MrsP Outperforms Classic MrP

Let us turn now to the key advantage of MrsP—
namely, that it allows the modeling of additional powerful
individual-level predictors—which promises to improve
prediction precision. The specification of the response
model on the individual level is in classic MrP prede-
termined by the census data (and restricted to three or
four demographic variables). This limitation constrains
even the most sophisticated research in the literature. For
example, in the works of Lax and Phillips (2009a) and
Warshaw and Rodden (2012), religion and age are im-
portant predictors of the political preferences they are in-
vestigating. Yet they could not include these variables on
the individual level in their studies because of data avail-
ability reasons. Following Lax and Phillips (2009a), the
standard procedure in the literature is to model variables
that are not available in the joint distribution format as
predictors on the subnational level of the response model
(instead of the individual level). This is a reasonable strat-
egy when these variables better explain variation among
the units rather than within them.

In the case of MrsP, however, researchers only need
marginal distributions (which is obviously unproblem-
atic for age and religion in subnational units of the United
States). Accordingly, the set of variables that can be mod-
eled on the individual level is greatly enhanced with MrsP.
Potentially interesting predictors are party identification,
income, and employment status—just to name a few.
The marginal distributions of these variables are typically
available for subnational units. Which of these (or other)
variables are potentially powerful predictors depends on
the political preferences of interest. The key question is
whether we can improve the prediction precision, when
interesting predictors of political preferences are modeled
as random effects on the individual level (MrsP) as com-
pared to classic MrP, where such variables are included
on the subnational level.

We first investigate that question with the Swiss data
introduced above. One of the most important recent de-
velopment in Swiss politics is the rise of the Swiss People’s

9Appendix D provides a detailed description of uncertainty esti-
mation with real-world data.

Party (SVP; see Kriesi et al. 2005). Particularly after 2007,
when the de facto leader of the SVP was not reelected
in the federal government, the party relied strongly on
direct democratic campaigns to reinforce the narrative
that they are in opposition against the “classe politique.”
Accordingly, in the legislative period 2007–11, identifi-
cation with the SVP was a strong predictor of whether
voters supported SVP referendums and initiatives, as sev-
eral exit poll analyses show. We analyze the following four
public votes of that legislative period, where the SVP was
starkly engaged against the unified coalition of all other
relevant Swiss parties and for which VOX survey data are
available:

1. Initiative for municipal town hall approval of
naturalization decisions.

2. Initiative to limit the government’s right to com-
municate in referendum campaigns.

3. Referendum against an increase of the VAT for
disability insurance.

4. Initiative to ban the construction of minarets.

For the estimation of subnational public opinion, we
specify the same baseline response model as discussed
above with gender, education, and age as individual-
level random effects, the shares of German speakers and of
Catholics as cantonal variables, and random effects for re-
gions and cantons. The baseline specification is extended
for MrsP by adding party identification as an additional
random effect on the individual level, whereas party iden-
tification is modeled for classic MrP as a subnational (i.e.,
cantonal) variable (like the shares of German speakers
and of Catholics). We predict the cantonal support for
the initiatives and referendums with classic MrP and with
MrsP using the elaborate technique with adjusted syn-
thetic joint distributions discussed in the previous sec-
tion. The predictions are compared to the actual results.

Figure 3 plots the MrsP and classic MrP predictions
against the true voting outcomes. In all four public votes,
MrsP clearly outperforms classic MrP. The improvements
in prediction precision are substantial, going up to a 72%
reduction of prediction error in the case of the initiative to
limit the government’s right to communicate in referen-
dum campaigns (i.e., a four times smaller mean squared
error [MSE]). The significant improvements show that
modeling party identification as a random effect on
the individual level for SVP public votes leads to more
accurate predictions than introducing that variable on
Level 2.10

10Appendix B reports a second Swiss example with income as an
additional predictor of tax policy preferences. The findings are
substantively the same.
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FIGURE 3 Public Vote Outcomes and Classic MrP and MrsP
Estimates for SVP Initiatives and Referendums with Party
Identification as an Additional Predictor

Note: The x-axis reports the estimated share of yes votes, and the y-axis shows the true cantonal
vote outcomes. MrsP includes party identification as a random effect on the individual level,
whereas classic MrP includes party identification as a cantonal variable on Level 2. The sample
sizes (N) vary between 525 and 680.

We additionally investigate a U.S. example, build-
ing on the Warshaw and Rodden (2012) analysis of the
estimation of public opinion in state legislative districts.
To cross-validate the findings, they compare the MrP pre-
dictions to the actual voting outcomes for direct demo-
cratic votes on same-sex marriage in Arizona, Califor-
nia, Michigan, Ohio, and Wisconsin. The response model
includes race, gender, and education as individual-level
predictors and, as district-level predictors, the median
income and the shares of the urban population, of vet-
erans, and of same-sex couples. The authors explicitly
state that age is a critical predictor that they cannot
model because the census has no data breakdown for
race/gender/education and age (Warshaw and Rodden
2012, 208). This is a case where MrsP goes beyond the data
limitation of current MrP applications, as the marginal
distributions of age are available for U.S. state legislative
districts.

For the analysis, we replicate the Warshaw and
Rodden (2012) public opinion estimates11 before exe-
cuting the MrsP analysis using adjusted synthetic joint

11We are indebted to the authors for providing us with detailed
replication files and their data set.

distributions for race, gender, education, and age.
In the case of MrsP, we model age, which cannot be
modeled in classic MrP, as an individual-level predictor
of same-sex marriage preferences. Figure 4 plots the dis-
aggregation, classic MrP, and MrsP estimates against the
true voting outcome. The disaggregation MSE is 0.022,
that of classic MrP 0.014, and that of MrsP 0.008. Relying
on that measure, MrsP improves upon classic MrP (the
error decreases by 43%) even more than classic MrP im-
proves upon disaggregation (the error decreases by 35%).

The U.S. analysis highlights the conditions under
which MrsP provides substantially better predictions than
classic MrP. The improvement in prediction is because
age is an important individual-level predictor of politi-
cal preferences in same-sex marriage questions: No other
estimated random effect variance term is as large in the
response model (education has the second largest, with
a variance of almost half the size; see Appendix C). This
example shows that adding just one powerful individual-
level predictor can have an extremely strong effect on the
precision of the predictions.

The reported MrsP predictions for the Swiss and
U.S. analyses are estimated using adjusted synthetic joint
distributions. We have also estimated the models with the
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FIGURE 4 Public Vote Outcomes and Disaggregation, Classic MrP, and
MrsP Estimates for the Warshaw and Rodden (2012) Analysis on
Same-Sex Marriage Referendums in Arizona, California,
Michigan, Ohio, and Wisconsin

Note: The x-axis reports the estimated share of yes votes, and the y-axis shows the true vote outcome
for state senate districts. MrsP includes age as a additional individual-level random effect, whereas age
cannot be modeled in classic MrP.

simple version of MrsP. The predictions of the more elab-
orate MrsP technique are a little better, but the improve-
ment is quite marginal. In the U.S. case, the mean squared
error of MrsP with the simple synthetic joint distribution
is 0.0091 (compared to 0.0080 for elaborate MrsP and
0.014 for classic MrP).12 One reason why elaborate MrsP
does not improve more on simple MrsP is because age
is not strongly correlated with the other individual-level
variables.13 This is consistent with the Monte Carlo analy-
ses, which have shown that simple MrsP is powerful when
correlations are low. Besides prediction precision, how-
ever, it is important to recall that elaborate MrsP allows
for the estimation of uncertainty induced by the adjusted
synthetic joint. Appendix D provides a detailed discussion
of uncertainty estimation for the U.S. case and shows that
the uncertainty induced by the adjusted synthetic joint
distribution is very small (2% of the overall uncertainty),
which is not surprising, given the large sample size (n =
17,611).

Based on the findings of the Monte Carlo simulations
and the Swiss and U.S. analyses, we recommend that ap-
plied researchers proceed as follows when considering
using MrP:

12In the Swiss example, the precision gains of the elaborate versus
simple MrsP are in the same rather marginal magnitude.

13The correlations vary from −0.17 (race) to −0.01 (education)
and 0.05 (gender). See Appendix A.

1. Analyze the survey data and explore which
individual-level variables are strong predictors
of the studied political preferences.

2. Check which variables, if any, are available as
joint distributions from the census.
2.1 Use classic MrP if all important individual-

level predictors are available as joint distri-
butions.

2.2 Use MrsP if at least one powerful predictor
is not available as joint distributions.
2.2.2 Use elaborate MrsP, particularly when

the individual-level predictors are cor-
related and when the predicted average
public support is far from 50%.

2.2.1 If the correlations among the
individual-level predictors are at very
low levels, simple MrsP is fine for point
predictions (note that uncertainty in-
duced by the simple joint distribution
cannot be estimated).

Our recommendations are guidelines for helping re-
searchers making sound judgments when applying MrP.
All of the three discussed MrP approaches have pros and
cons. Simple MrsP is by far the least demanding technique
in terms of estimation and data requirements, and the pre-
dictions are in many cases much better compared to the
classic version. Particularly in developing countries with
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sparse data, where classic MrP cannot be applied, sim-
ple MrsP might be a good option. However, researchers
should pay attention to the limitations of simple MrsP
(correlation of individual-level variables, lopsided pub-
lic support, and inaccurate uncertainty estimation). The
presented findings suggest that elaborate MrsP is a very at-
tractive and widely applicable extension of MrP. For some
(rare) cases in advanced countries, classic MrP should be
as good as (or might even be superior to) elaborate MrsP.
This can be the case when the important predictors are
available as joint distributions and the survey sample is
too small to extract meaningful information for the con-
struction of adjusted synthetic joint distributions.

Conclusion

The comparative study of subnational units has attracted
growing interest, and the estimation of reliable public
preference measures for subnational units is a critical
element in the literature. MrP generates reliable public
opinion estimates for subnational units with standard
national polling data. The numerous MrP studies pub-
lished in recent years show that the method stimulates
research—for example, on the responsiveness of subna-
tional politicians and administrations to voters’ prefer-
ences (Lax and Phillips 2012; Leemann and Wasserfallen
2016; Tausanovitch and Warshaw 2014). However, the
application of MrP has been restricted to a few countries
because of the stringent data requirements of the current
standard approach, which requires detailed census data in
the form of joint distributions (researchers need to know,
for example, how many 18–35-year-old women with a
university degree live in each subnational unit).

The presented alternative application of MrP, MrsP,
relies on the marginal distribution of individual-level
variables (e.g., the shares of women, of university gradu-
ates, and of 18–35-year-old citizens in each subnational
unit), which extends the use of the method to countries
without joint distribution census data. This extension
of subnational public opinion estimation with MrP is
important for stimulating comparative subnational re-
search in less-developed countries with more restricted
data availability. We compared MrsP and the current stan-
dard MrP approach theoretically using Monte Carlo anal-
yses and Swiss and U.S. data examples. The findings show
that, using the same predictors, MrsP usually performs in
standard applications as well as the current standard ap-
proach, and that MrsP increases the prediction precision
when additional strong predictors beyond the standard
demographic variables are added to the response model.

The improvements of MrsP also promise to further
stimulate subnational comparative research in developed
countries with census data. So far, scholars have relied
on rather generic response models with three or four
demographic individual-level variables as predictors of
various policy preferences. With MrsP, the individual-
level predictors can be selected depending on the political
preferences of interest. Public opinion polls show, for
example, that churchgoing is associated with policy views
on abortion, and views on free trade policies are correlated
with the trade exposure of an individual’s job (Mayda
and Rodrik 2005). The presented findings suggest that
modeling such strong predictors increases the prediction
precision of MrP substantially. MrsP thus takes MrP to
new countries and improves the predictive power of the
method by allowing more model flexibility. The guidance
provided in this article helps scholars to develop MrP
applications that take full advantage of the available data
for the estimation of subnational policy preferences.

Appendixes

Appendix A: Correlation of
Individual-Level Variables

The Monte Carlo analyses suggest that correlations below
≈ |0.4| should be unproblematic for MrsP applications.
In the U.S. and Swiss data, the correlations are much
lower, as Tables A1 and A2 show.

TABLE A1 Average Correlation Matrix over 186
Swiss Exit Polls

Education Age Gender

Education 1.00 −0.12 −0.20
Age −0.12 1.00 0.02
Gender −0.20 0.02 1.00

TABLE A2 Correlation Matrix from U.S. Data
(Warshaw and Rodden 2012)

Age Education Race Gender

Age 1.00 −0.01 −0.17 0.05
Education −0.01 1.00 −0.09 −0.04
Race −0.17 −0.09 1.00 −0.01
Gender 0.05 −0.04 −0.01 1.00
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Appendix B: Additional Swiss
Analysis

The article shows that MrsP increases the predic-
tion precision compared to classic MrP with the exam-
ple of introducing party identification as an additional
individual-level predictor for SVP initiatives and referen-
dums for the 2007–11 legislative period. Another inter-
esting individual-level predictor of political preferences is
income. Earned income has been identified in the liter-
ature as an important determinant of tax policy prefer-
ences that is typically politicized by the left (Bartels 2008;
Corneo and Grüner 2002).

We find eight public votes on taxation with a dis-
tinct left-right campaign dynamic in the Swiss survey
data (VOX). As in the SVP example, we rely on the base-
line specification of the response model. For assessing the
gains in prediction precision, we introduce income as an
additional random effect for MrsP and compare the MrsP
predictions using simple synthetic joint distributions to
classic MrP, where we model income as a variable on the
subnational level.

The proportional mean squared error reductions re-
ported in Figure A1 corroborate that MrsP outperforms
classic MrP when a powerful predictor of the investigated
political preferences is introduced on the individual level.
The mean squared error reductions between 5% and

FIGURE A1 Reduction in Mean Squared Errors
between Classic MrP and MrsP
Estimates

Note: Swiss votes on taxation with income as additional predictor
are shown; sample sizes vary between 445 and 819.

77% are again substantial improvements in prediction
precision.

Appendix C: Replication of Warshaw
and Rodden (2012)

Table A3 presents the response model estimates of the
Warshaw and Rodden (2012) replication analysis. The
MrsP model includes age as an individual-level predictor.
The random effect for age is large (and the other ran-
dom effects are also larger in the MrsP model), which

TABLE A3 MrP and MrsP Response Model
Estimates

MrsP Model MrP Model

Gender −0.49∗∗∗ −0.43∗∗∗

(0.04) (0.03)
Income (district) −0.72∗∗∗ −0.79∗∗∗

(0.18) (0.17)
Urban (district) −0.65∗∗∗ −0.60∗∗∗

(0.10) (0.10)
Veteran (district) −0.59 −0.42

(0.56) (0.55)
Religion (state) 1.70∗∗∗ 1.56∗∗∗

(0.28) (0.27)
Union members (state) −0.91 −0.82

(0.63) (0.61)
Same-sex couples (district) −34.17∗∗∗ −34.35∗∗∗

(3.41) (3.13)
Constant 2.48∗∗∗ 2.15∗∗∗

(0.36) (0.29)

Variance: district 0.08 0.07
Variance: state 0.01 0.00
Variance: age.group 0.45 not included
Variance: education.group 0.24 0.21
Variance: region 0.01 0.01
Variance: race 0.07 0.04

AIC 20415.85 21103.44
BIC 20524.72 21204.53
Num. obs. 17611 17611
Num. of districts 1779 1779
Num. of states 48 48
Num. groups: age 16
Num. groups: education 5 5
Num. groups: region 4 4
Num. groups: race 4 4

Note: ∗∗∗p < .001, ∗∗p < .01, ∗p < .05.
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FIGURE A2 Random Effects for Age from the MrsP Response Model

Note: Estimates of the random effects and 1,000 simulations drawn from the posterior vector for illustrating estimation
uncertainty.

shows, together with the AIC and BIC values, that intro-
ducing age increases the predictive power of the model
substantially.

To further illustrate how strongly age is correlated
with attitudes toward same-sex marriage, Figure A2 plots
the 16 different random effects for age from the MrsP
response model. The older a respondent is, the larger the
estimated random effect (y = 1 is equivalent to being
opposed to same-sex marriages).

Appendix D: Uncertainty with
Adjusted Synthetic Joint

Distributions

To further illustrate the estimation of uncertainty for
the elaborate version of MrsP, we discuss in more detail
the U.S. example. In the U.S. census, age is classified in
15 different groups. To create adjusted synthetic joint
distributions, we use the census information on the age
structure in each district and the survey data. Table A4
shows the age distribution in the survey (second column)
and in district j (third column). The correction factor
(fourth column) shows how the data have to be adjusted.

In the adjustment step, we correct the survey data
for each district so that the age shares for every ideal
type are according to the survey information, while mak-
ing sure (with the use of the correction factor) that the

eventual marginal distribution of age is equal to the true
marginal distribution in each district. Table A5 shows the
accordingly derived adjusted synthetic joint distribution
for district j . Every line represents one of the 40 ideal
types (race×gender×education), and each columns
refers to a specific age category.

TABLE A4 Generating the Adjusted Synthetic
Joint Distribution for District j

Age Survey Census Correction
Group (All Districts) (for District j) Factor, c j

<20 0.06 0.09 1.60
20–24 0.08 0.08 0.97
25–29 0.10 0.07 0.75
30–34 0.09 0.08 0.86
35–39 0.11 0.09 0.78
40–44 0.12 0.10 0.81
45–49 0.11 0.10 0.92
50–54 0.09 0.09 1.02
55–59 0.07 0.08 1.20
60–64 0.06 0.07 1.17
65–69 0.05 0.06 1.12
70–74 0.04 0.04 1.26
75–79 0.03 0.03 1.28
80–84 0.01 0.02 2.38
>84 0.01 0.01 1.29
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TABLE A5 Adjusted Synthetic Joint Distribution for District j

<20 20–24 25–29 30–34 35–39 40–44 45–49 50–54 55–59 60–64 65–69 70–74 75–79 80–84 >84

4 6 1 4 1 5 5 6 5 4 5 2 3 0 0
13 11 14 16 31 18 21 12 12 10 3 6 1 3 2

4 18 19 7 15 21 20 18 11 6 9 4 2 1 0
0 5 6 14 15 11 14 10 9 4 1 1 1 1 0
0 0 6 2 3 8 4 14 8 4 2 1 0 0 2

10 8 6 9 8 6 4 7 3 7 7 2 3 3 0
18 24 29 23 25 26 26 21 20 13 6 10 5 0 2

2 38 33 29 31 26 39 36 15 7 7 5 3 2 0
0 8 19 11 19 12 28 7 11 3 2 4 1 1 0
0 1 7 14 10 19 18 19 5 5 5 3 1 0 1

11 17 17 27 23 21 14 6 8 2 1 5 3 1 0
19 21 28 22 24 14 15 6 5 5 2 2 0 1 0
10 19 21 21 21 14 19 9 11 3 2 1 2 0 1

0 5 14 19 14 9 13 7 6 3 2 1 0 0 0
0 1 2 7 1 7 6 4 3 2 2 1 0 1 0
6 16 18 28 23 13 11 10 9 6 5 6 2 2 1

14 21 27 33 25 18 9 11 8 6 4 6 1 1 0
11 32 21 24 13 17 17 13 6 7 4 3 3 1 0

0 8 12 14 16 14 9 6 2 1 1 1 2 1 0
0 1 6 12 14 11 5 8 5 1 0 4 0 0 2

28 20 16 22 19 30 27 22 24 29 36 23 22 20 11
62 99 97 139 146 171 195 135 115 108 111 84 51 40 26
20 136 123 130 121 166 188 198 156 122 87 75 48 39 15

0 62 128 178 161 193 168 138 124 89 66 54 40 29 15
0 11 75 116 127 139 147 184 141 122 87 61 57 23 16

27 19 20 20 20 27 25 29 27 43 41 36 55 31 17
50 99 99 111 139 184 200 213 208 197 176 175 125 96 46
32 150 155 190 180 254 306 250 228 168 149 126 85 83 47

0 59 138 185 167 174 212 184 127 92 67 64 35 27 20
1 27 96 128 124 145 178 191 169 90 84 60 32 17 25
7 3 1 2 0 2 3 0 0 3 1 4 0 0 1
6 8 7 7 8 10 7 9 3 6 6 5 2 1 0
5 8 10 11 12 13 10 13 6 2 1 1 3 0 2
0 2 11 21 10 15 7 11 7 5 3 1 0 0 1
0 3 7 15 16 10 17 7 12 6 5 3 1 0 0
2 5 1 3 1 2 1 3 4 4 3 1 2 2 1
5 4 6 10 5 10 6 10 6 8 4 5 4 1 2
3 24 20 10 14 21 8 14 10 5 4 3 3 1 2
0 9 9 13 5 15 19 9 4 5 0 1 2 0 2
0 3 15 13 8 9 4 19 4 4 0 0 0 0 1

To estimate the uncertainty, we take into account that
our survey information approximates how age groups are
distributed within an ideal type. The distribution of age
categories can be described by a multinomial distribution,
which depends on the survey sample size (equivalent to
the number of trials) and the relative frequencies. Accord-

ingly, we run simulations and draw a number of potential
outcomes to capture the uncertainty that is induced by
the adjustment step.

Figure A3 reports in the left plot the uncertainty that
is induced by the adjusted synthetic joint distribution. The
right plot shows the full uncertainty (including the model
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FIGURE A3 Sources of Uncertainty with MrsP

Note: The left plot shows the uncertainty (95% confidence intervals) induced by the adjusted synthetic joint
distribution, and the right plot shows the full uncertainty (including model uncertainty).

uncertainty). The findings show that the uncertainty in-
duced by the synthetic joint distribution is minimal (only
2% of the total uncertainty). Two important factors drive
this finding: first, the large sample size, and, second, the
low correlation among the individual-level predictors (no
correlation is larger than 0.2; the largest correlation is 0.17
for race and age). Thus, the drawback of the simple ver-
sion of MrsP—that we cannot estimate the uncertainty
induced by the synthetic joint distribution—is not as con-
sequential when the sample is large and the correlations
are low.

Appendix E: Raking as an Alternative
to Synthetic Poststratification

MrsP uses information from marginal distributions for
the creation of synthetic joints. Raking, a standard pro-
cedure in survey research, offers an alternative for post-
stratification with marginal distributions. In a nutshell,
raking assigns weights based on the marginal distribu-
tion of one variable, then calculates—conditional on the
derived weights—new weights with the marginal distri-
bution of the second variable, and continues with this
iterative proportional fitting until the weighted survey
best approximates the distribution of the target popu-
lation (Deming and Stephan 1940; Fienberg 1970). Like

MrsP, raking relies on information from marginal dis-
tributions and thus offers a potential alternative for
poststratification.

However, poststratification with raking is slightly dif-
ferently implemented than MrsP. Rather than using the
calculated joint distributions from the synthetic joint
distributions, multilevel regression with raking (MrR)
weighs the predictions for voter types (see Steps 1–3 of
MrP discussed in “‘Classic MrP’ and Its Limits” in the
main text) with the weights calculated by iterative pro-
portional fitting. We present below an application of MrR
and compare its predictions to classic MrP and MrsP. In
this example, MrsP yields more precise predictions than
MrR. The reason for this finding is that MrsP with syn-
thetic (adjusted) joint distributions exploits additional
information from the survey data. An additional advan-
tage of MrsP is that it allows us to take into account the
uncertainty over the true joint distribution for generat-
ing the uncertainty measure (this cannot be done with
raking). Thus, although MrR certainly is a feasible alter-
native, we recommend MrsP.

To assess the prediction precision of MrR, we again
analyze the Warshaw and Rodden (2012) example dis-
cussed in “How MrsP Outperforms Classic MrP” in the
main text. In this example, we know the true joint dis-
tribution for race, gender, and education, but not
for age. We want to include age because it is expected
to be a powerful predictor of an individual’s preference
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FIGURE A4 Public Vote Outcomes and Classic MrP, MrsP, and MrR
Estimates for the Warshaw and Rodden (2012) Analysis
on Same-Sex Marriage Referendums in Arizona, California,
Michigan, Ohio, and Wisconsin with Age as Additional
Predictor

Note: The x-axis reports the estimated share of yes, votes and the y-axis shows the true vote outcome
for state senate districts. MrsP and MrR include age as a additional individual-level random effect,
whereas age cannot be modeled in classic MrP.

over same-sex marriage. To generate MrR estimates, we
take the known joint distribution of race, gender, and
education and treat it as if it were a univariate distri-
bution with 40 possible values (all combinations from
two gender categories, four race categories, and five
education categories). This allows us to keep the known
information of the partial joint distribution. We then add
the 15 age categories, which yields 600 different voter
types. Finally, using the predicted probabilities for each
of these 600 voter types, we employ raking over two vari-
ables: the race-gender-education variable (with 40
categories) and the age variable (with 15 categories).

The findings presented in Figure A4 show that MrR
outperforms classic MrP. This is because MrR takes age
into account when modeling the individual preferences.
Yet MrR has a larger mean squared error (MSE) than MrsP
because it does not exploit the survey information about
the joint distribution. Please also note that the raking re-
sults are sensitive to the sequence of the variables (we use
the rake command from the survey library [Lumley
2004] in R). The MSE is 0.011 when we first specify
the race-gender-education variable and then the
age variable. In the reversed iteration, the MSE is 0.010
(we report in Figure A4 the better MrR outcome for this
example).
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